Steroids from the Gorgonian Isis hippuris

Chih-Hua Chao, Long-Fei Huang, Shwu-Li Wu, Jui-Hsin Su, Ho-Cheng Huang, and Jyh-Horng Sheu*

Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, Republic of China

Received June 7, 2005

Six new polyoxygenated steroids, hippuristerones J-L (1-3), hippuristerols E-F (4, 5), and a novel gorgosteroid, 1α , 3β , 5β , 11α -tetrahydroxygorgostan-6-one (6), were isolated from the gorgonian *Isis hippuris*. The structures of these metabolites were elucidated by extensive spectroscopic analyses and comparison of the NMR data with those of related steroids.

Previous chemical investigations on the gorgonian *I. hippuris* have led to the isolation of a series of new natural products, including suberosane-type sesquiterpenes,^{1,2} highly oxygenated spiroketal steroids that were named as hippurins or hippuristanols,^{2–7,9,10} hippuristerones, and hippuristerols,^{7–9} and polyoxygenated gorgosteroids.^{11–13} Our continuing study on the chemical constituents of *I. hippuris*, collected by hand using scuba at Green Island, located off the southeast coast of Taiwan, in February 1999, has again afforded a series of polyoxygenated steroids, namely, hippuristerones J–L (**1–3**), hippuristerols E–F (**4**, **5**), and a gorgosteroid (**6**). We describe herein the isolation and structure elucidation of these new compounds.

Results and Discussion

Compound 1 was obtained as a white powder. The HRFABMS of 1 exhibited a $[M + H]^+$ peak at m/z 635.3802 and established a molecular formula of $C_{35}H_{54}O_{10}$, implying nine degrees of unsaturation. The ¹³C NMR and DEPT spectra displayed 35 signals: eight methyls, ten methylenes, eight methines, and nine quaternary carbons including one ketone ($\delta_{\rm C}$ 211.6, s). From the ¹³C NMR spectral data, the carbon resonances at $\delta_{\rm C}$ 171.8 (s), 171.0 (s), and 170.5 (s) along with three methyl groups at $\delta_{\rm C}$ 21.1 (q), 21.0 (q), and 20.9 (q) disclosed the presence of three acetyl groups. The above data suggest that compound **1** possesses a pentacyclic structure. The presence of a C-3 ketone ($\delta_{\rm C}$ 211.6, s), a C-17, C-20 tetrasubstituted epoxide ($\delta_{\rm C}$ 79.3, s and 66.8, s), a secondary alcohol at C-16 ($\delta_{\rm H}$ 4.12 t, J = 7.2Hz; $\delta_{\rm C}$ 70.6, d), and a tertiary hydroxy group at C-25 ($\delta_{\rm C}$ 74.6), which were all confirmed by HMBC correlations (Figure 1), revealed that compound 1 should be a member

Figure 1. Selected HMBC and ¹H-¹H COSY correlations of 1.

of the hippuristerones.^{7,9} Acetyl groups attached at C-22, C-26, and C-21, respectively, were confirmed by the key HMBC correlations shown in Figure 1. On the basis of the above results and by comparison of NMR spectral data with

those of hippuristerone I (7),⁷ the structure of **1** was established and named hippuristerone J.

The metabolite **2** was isolated as a white powder, and its molecular formula was found to be $C_{33}H_{52}O_7$, as deduced from HRFABMS spectral data. By comparison of the NMR spectral data with those of hippuristerone I (7), an additional acetoxy group was found to be attached at C-26. Thus, the structure of **2** was deduced and named hippuristerone K.

Compound **3** was obtained as a white powder, which gave a $[M + H]^+$ peak at m/z 503.3734 in the HRFABMS. Thus, a molecular formula of $C_{31}H_{50}O_5$ was established. This metabolite was found to be unstable in CDCl₃. Thus, the

^{*} To whom correspondence should be addressed. Tel: 886-7-5252000, ext. 5030. Fax: 886-7-5255020. E-mail: sheu@mail.nsysu.edu.tw.

	1	1				
C #	1^{b}	2^{a}	3^{c}	4^{b}	5^{a}	6 ^a
1	$38.4 (CH_2)^d$	$38.4 (CH_2)^d$	$38.7 (CH_2)^d$	$32.2 (CH_2)^d$	$32.0 (CH_2)^d$	$70.4 (CH)^d$
2	$38.1 (CH_2)$	$38.1 (CH_2)$	$38.5 (CH_2)$	$29.1 (CH_2)$	$28.9 (CH_2)$	$37.4 (CH_2)$
3	211.6 (C)	211.9 (C)	209.1 (C)	66.6 (CH)	66.5 (CH)	68.0 (CH)
4	$44.6 (CH_2)$	$44.6 (CH_2)$	$45.0 (CH_2)$	$35.9 (CH_2)$	$35.7 (CH_2)$	$37.3 (CH_2)$
5	46.5 (CH)	46.5 (CH)	46.6 (CH)	39.1 (CH)	38.9 (CH)	84.0 (C)
6	$28.7 (CH_2)$	$28.7 (CH_2)$	$29.2 (CH_2)$	$28.4 (CH_2)$	$28.3 (CH_2)$	210.5 (C)
7	$31.5 (CH_2)$	$31.3 (CH_2)$	$31.7 (CH_2)$	$31.8 (CH_2)$	$31.7 (CH_2)$	$41.1 (CH_2)$
8	34.7 (CH)	35.4 (CH)	35.2 (CH)	35.7 (CH)	34.7 (CH)	36.0 (CH)
9	53.6 (CH)	53.2 (CH)	53.9 (CH)	54.2 (CH)	54.1(CH)	50.2 (CH)
10	35.7 (C)	35.6 (C)	35.9 (C)	36.1 (C)	36.1 (C)	50.6 (C)
11	$21.4 (CH_2)$	$21.5 (CH_2)$	$21.9 (CH_2)$	$20.9 (CH_2)$	$20.6 (CH_2)$	66.3 (CH)
12	$36.3 (CH_2)$	$36.4 (CH_2)$	$38.9 (CH_2)$	$36.7 (CH_2)$	$36.8 (CH_2)$	$49.0 (CH_2)$
13	41.4 (C)	43.8 (C)	46.0 (C)	43.8 (C)	43.1 (C)	43.3 (C)
14	49.3 (CH)	55.0 (CH)	53.1(CH)	55.2 (CH)	49.5 (CH)	55.4 (CH)
15	$33.2 (CH_2)$	$23.6 (CH_2)$	$35.2 (CH_2)$	$23.5 (CH_2)$	$33.2 (CH_2)$	$24.5 (CH_2)$
16	70.6 (CH)	$31.3 (CH_2)$	71.8 (CH)	$30.9 (CH_2)$	$70.1({ m CH})$	$28.0 (CH_2)$
17	79.3 (C)	79.0 (C)	155.6 (C)	79.3 (C)	79.2 (C)	57.8 (CH)
18	$15.2 (CH_3)$	$15.3 (CH_3)$	$17.3 (CH_3)$	$15.4 (CH_3)$	$15.5 (CH_3)$	$12.7 (CH_3)$
19	$11.5 (CH_3)$	$11.4 (CH_3)$	$11.5 (CH_3)$	$11.3 (CH_3)$	$11.1 (CH_3)$	$14.6 (CH_3)$
20	66.8 (C)	67.1 (C)	125.4 (C)	67.3 (C)	67.7 (C)	35.2 (CH)
21	$63.4 (CH_2)$	$17.2 (CH_3)$	$12.9 (CH_3)$	$17.0 (CH_3)$	$16.4 (CH_3)$	$21.0 (CH_3)$
22	75.9 (CH)	78.4 (CH)	81.2 (CH)	78.5 (CH)	77.7 (CH)	31.9 (CH)
23	31.6 (CH)	32.5 (CH)	34.2 (CH)	33.4 (CH)	33.0 (CH)	25.9 (C)
24	41.4 (CH)	38.4 (CH)	42.5 (CH)	41.6 (CH)	41.6 (CH)	50.7 (CH)
25	74.6 (C)	74.3 (C)	73.2(C)	73.9 (C)	73.7 (C)	32.0 (CH)
26	$68.3 (CH_2)$	$71.0 (CH_2)$	$27.8 (CH_3)$	30.6 (CH ₃)	$30.8 (CH_3)$	$21.5 (CH_3)$
27	$25.6 (CH_3)$	$20.3 (CH_3)$	$29.8 (CH_3)$	$26.4 (CH_3)$	$26.0 (CH_3)$	$22.1 (CH_3)$
28	$10.8 (CH_3)$	$10.8 (CH_3)$	$10.9 (CH_3)$	$11.2 (CH_3)$	$11.4 (CH_3)$	$15.5 (CH_3)$
29	$12.6 (CH_3)$	$12.2 (CH_3)$	$12.7 (CH_3)$	$11.9 (CH_3)$	$12.0 (CH_3)$	$14.3 (CH_3)$
30						$21.3 (CH_2)$
OAc	171.8 (C)	170.6 (C)	172.5 (C)	170.6 (C)	171.6 (C)	
	171.0 (C)	170.9 (C)				
	170.5 (C)					
OAc	$21.1 (CH_3)$	$21.0 (CH_3)$	$21.0 (CH_3)$	$21.1 (CH_3)$	$21.0 (CH_3)$	
	$21.0 (CH_3)$	$21.1 (CH_3)$				
	$20.9 (CH_3)$					

^{*a*} Spectra recorded at 125 MHz in CDCl₃ at 25 °C. ^{*b*} Spectra recorded at 75 MHz in CDCl₃ at 25 °C. ^{*c*} Spectra recorded at 125 MHz in C₆D₆ at 25 °C. ^{*d*} Multiplicity deduced by DEPT. The values are in ppm downfield from TMS.

NMR spectra of **3** were measured in C₆D₆. By comparison of the ¹³C NMR spectral data of **3** with those of a known steroid hippuristerone H (**8**),⁷ it was found that the 17,20epoxide (δ_{C-17} 79.2 s and δ_{C-20} 67.8 s) in hippuristerone H was converted to an olefinic group (δ_C 155.6 s and δ_C 125.4 s) in **3**, as also confirmed by HMBC cross-peaks (H₃-21/C-17, C-20, and C-22). Thus, the structure of **3** was established and named hippuristerone L.

Hippuristerol E (4) was obtained as a white powder. The formula of 4 was found to be $C_{31}H_{52}O_5$, as deduced from HRFABMS spectral data. By comparison of the NMR spectral data of 4 with those of the known steroid hippuristerol B (9),⁹ it was found that two methyl signals appearing at δ_H 1.51 s (H₃-26) and 1.55 s (H₃-27) in hippuristerol B were converted to δ_H 1.21 s (H₃-26) and 1.27 s (H₃-27) in 4, revealing that the acetoxy group attached at C-25 in hippuristerol B has been deacetylated in compound 4.

Compound **5** was obtained as a white powder. The HRFABMS of **5** established a molecular formula of $C_{31}H_{52}O_6$.

By comparison of the NMR spectral data of **5** with those of a known steroid, hippuristerol A (**10**),⁹ it was found that the ¹H and ¹³C spectral data of both compounds were nearly the same, except that the proton signals of H₃-26 and H₃-27 and the carbon shift of C-25 of **5** were shifted upfield relative to those of **10**. Thus, **5** is the 25-O-deacetylated product of **10** and was named hippuristerol F.

Compound 6 was isolated as an amorphous powder. The HRFABMS of **6** established a molecular formula of $C_{30}H_{50}O_5$, implying six degrees of unsaturation. The IR spectrum of **6** showed the presence of hydroxy (ν_{max} 3356 cm⁻¹) and ketonic carbonyl (ν_{max} 1718 cm⁻¹) groups. ¹³C NMR and DEPT spectra showed signals of seven methyl, seven methylene, 11 methine, and five quaternary carbons, including one ketone (δ 210.5, s) and four oxygenated sp³ carbons (& 84.0, C; 70.4, CH; 68.0, CH; 66.3, CH) (Table 1). The above spectroscopic data suggested a pentacyclic structure with four hydroxy groups and one ketone in 6. The upfield region of the ¹H NMR spectrum afforded two signals at δ -0.11 (1H, dd, J = 4.5, 5.5 Hz) and 0.49 (1H, dd, J = 4.5, 9.5 Hz), which was found to be correlated to a methylene signal at $\delta_{\rm C}$ 21.3 (t), and a multiplet at δ 0.17 (1H, m) correlated to a carbon signal at δ 31.9 (d) in the HMQC spectrum of 6. The above observations together with the presence of a quaternary carbon signal at δ 25.9 further suggested the presence of a trisubstituted cyclopropane ring.¹² On the basis of these structure features and the presence of seven methyl signals, it was proposed that compound 6 was a tetrahydroxylated steroid bearing one ketone functional group and a cyclopropane-containing side chain.

Figure 2. Selected HMBC and ¹H-¹H COSY correlations of 6.

Figure 3. Selected NOESY correlations of 6.

From the ¹H NMR, HMBC, and COSY spectra of 6 (Figure 2 and Table 1), seven methyl signals observed at δ 0.64 (3H, s); 0.86 (3H, d, J = 6.5 Hz); 0.90 (3H, s); 0.93(3H, d, *J* = 7.0 Hz); 0.95 (3H, d, *J* = 6.5 Hz); 1.05 (3H, s) and 1.05 (3H, s) were assigned to H₃-18, H₃-26, H₃-29, H₃-28, H₃-27, H₃-19, and H₃-21, respectively. From the COSY spectrum of 6 (Figure 2), it was possible to establish the proton sequences from H-1 to H-2, H₂-7 to H-9, H-9 to H-11, H-11 to H₂-12, H-14 to H-15, H-17 to H-20, H-22 to H₂-30, H-24 to H₃-27, and H-24 to H-28. Three proton signals appearing at δ 4.34 (1H, dd, J = 13.0, 3.5 Hz), 4.20 (1H, brs), and 3.96 (1H, m) were assigned to H-1, H-3, and H-11, respectively, by the assistance of COSY and HMBC correlations (Figure 2). An additional proton signal at δ 4.63 (1H, s) was deduced to be the resonating peak of a tertiary hydroxy group attaching to C-5 (δ 84.0, s), as confirmed by the HMBC correlations of this proton to C-4 and C-5. The ketone functionality of C-6 was confirmed by its HMBC correlations with 5-OH (δ 4.63) and H₂-7 (2H, δ 2.47, dd, J = 14.0, 4.5 Hz and 2.32, t, J = 14.0). Therefore, the planar structure of 6 was established unambiguously.

An unusual feature was the ¹H NMR signal of H₃-21, which appeared as a singlet rather than the doublet that was expected by the spin—spin splitting from these protons with H-20. This feature has been previously described in compounds 9-hydroxygorgosterol and 9,11 α ,14- trihydroxygorgosterol,¹⁴ both possessing a gorgosterol-like side chain, and could be attributed to the fact that H₃-21 and H-20 are coincidentally isochronous.

The relative stereochemistry and the detailed ¹H NMR spectral data assignment of 6 were determined mainly by the assistance of a NOESY experiment (Figure 3). In the NOESY spectrum of 6, H-8 and H-11 were found to show NOE correlations with both H_3 -18 and H_3 -19, suggesting the β -orientation of H-8 and H-11. Moreover, H-1 also exhibited a NOE correlation with H₃-19. Thus, H-1 should also be placed on the $\beta\text{-face}.$ The H-14 signal did not exhibit a NOE interaction with H₃-18, but instead showed a correlation with H-9, which in turn showed a NOE correlation with a proton attached to C-4 ($\delta_{\rm H}$ 2.31, dd, J =14.0, 3.5), suggesting the α -orientation of these protons. The 5-OH proton showed a weak NOE correlation to H₃-19, which indicated the β -orientation of the 5-OH group. Furthermore, although H-3 did not show any correlation in the NOESY spectrum of **6**, the β -orientations of 3-OH and 5-OH were confirmed by a comparison of the ¹H and ¹³C NMR spectral data with those of gibberoketosterol,¹⁵ a known metabolite possessing a similar carbon skeleton

gibberoketosteroi

Figure 4. Comparison of ring A $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR data of 6 and gibberoketosterol (J values are in Hz in parentheses).

(Figures 3 and 4). The stereochemistry of the side chain moiety could be determined by comparison of the ¹H and ¹³C NMR spectral data with those of a gorgosteroid that was isolated previously and structurally elucidated by a single-crystal X-ray diffraction analysis from *I. hippuris*.¹² Thus, the structure of **6**, including the stereochemistry, was determined unambiguously and assigned as $1\alpha, 3\beta, 5\beta, 11\alpha$ -tetrahydroxygorgostan-6-one.

Although many hippuristerones and hippuristerols have been isolated from *I. hippuris*, a highly substituted side chain like that of **1**, which contains four oxygenated substituents at C-21, C-22, C-25, and C-26 and two methyl substituents at C-23 and C-24, respectively, has never been found before. Furthermore, this is the first report of a gorgosteroid possessing a 5β -hydroxy-6-one functionality.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter. IR spectra were recorded on a Jasco FT-5300 infrared spectrophotometer. NMR spectra were recorded on a Bruker Avance DPX300 FT-NMR at 300 MHz for ¹H and 75 MHz for ¹³C or on a Varian Unity INOVA 500 FT-NMR at 500 MHz for $^1\mathrm{H}$ and 125 MHz for ¹³C, respectively, in CDCl₃ using TMS as internal standard. Low-resolution and high-resolution FABMS were recorded on a JEOL JMS-700 spectrometer. Silica gel (Merck, 230-400 mesh) was used for column chromatography. Precoated silica gel plates (Merck, Kieselgel 60 F-254, 0.2 mm) were used for analytical TLC. High-performance liquid chromatography (HPLC) was performed on a Hitachi L-7100 apparatus equipped with a Bischoff refractive index detector or a Hitachi L-7400 UV detector and with the Merck Hibar Si-60 column (250 \times 21 mm, 7 μ m).

Animal Material. The gorgonian coral *I. hippuris* was collected by hand using scuba at Green Island, which is located off the southeast coast of Taiwan, in February 1999, at a depth of 25 m, and was stored in a freezer until extraction. A voucher specimen was deposited in the Department of Marine Re-

Table 2. ¹H NMR Spectral Data of Compounds 1–6 (values are in ppm downfield from TMS)

	C #	1^b	2^{a}	3^{c}	4^{b}	5^{a}	6 ^{<i>a</i>}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2.05 m	2.00 m	1.48 m	1.50 m	1.45 m	4.34 dd (13.0, 3.5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.33 m	1.32 m	0.83 m	1.29 m	1.30 m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2.30 m	2.34 m	2.18 m	1.62 m	1.66 m	2.40 dt (13.5, 3.0)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							2.06 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3				4.06 br s	4.06 br s	4.20 br s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2.28 m	2.27 m	1.97 m	1.56 m	1.52 m	2.31 dd (14.0, 3.5)
		2.11 m	2.08 m	1.88 m	1.40 m	1.38 m	1.65 br d (14.5)
	5	1.58 m	1.52 m	1.05 m	1.55 m	$1.53 { m m}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1.40 m	1.36 m	0.93 m	1.24 m	1.24 m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	1.82 m	1.78 m	1.44 m	1.78 m	1.76 m	2.47 dd (14.0, 4.5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.92 m	0.94 m	0.53 m	0.95 m	0.94 m	2.32 t (14.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$1.56 \mathrm{m}$	1.52 m	1.22 m	1.42 m	$1.51 { m m}$	1.79 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0.70 m	0.74 m	0.35 m	0.72 m	0.73 m	1.98 br t (10.0)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1.63 m	1.60 m	1.28 m	1.64 m	1.61 m	3.96 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.42 m	1.38 m		1.26 m	1.27 m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1.42 m	1.38 m	2.21 m	1.35 m	1.34 m	1.34 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.84 m	1.79 m	1.41 m	1.78 m	1.79 m	2.44 dd (14.0, 4.5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1.07 m	1.23 m	0.96 m	1.24 m	1.06 m	1.37 m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	2.20 m	1.64 m	2.31 m	1.67 m	2.22 m	1.61 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.46 m	1.34 m	1.63 m	1.31 m	1.38 m	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	$4.12 t (7.2)^c$	2.10 m	5.06 t (7.0)	2.08 m	4.05 t (7.5)	1.37 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.87 m		1.88 m		2.12 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17						1.36 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$1.00 \mathrm{~s}$	0.92 s	$1.18 \mathrm{~s}$	0.91 s	$0.93 \mathrm{s}$	$0.64 \mathrm{~s}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1.02 s	1.01 s	$0.56 \mathrm{~s}$	$0.78 \mathrm{~s}$	$0.78 \mathrm{~s}$	1.05 s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20						1.05 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	5.02 d (12.6)	$1.56 \mathrm{~s}$	$1.81 \mathrm{s}$	$1.57 \mathrm{~s}$	$1.59 \mathrm{~s}$	1.05 s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.38 d (12.6)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	4.74 d (10.5)	4.74 d (10.5)	5.56 d (10.5)	4.75 d (10.7)	4.61 d (11.0)	0.17 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	$2.45 \mathrm{m}$	2.43 m	2.33 m	2.37 m	$2.44 \mathrm{m}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1.70 m	1.77 m	1.61 m	1.64 m	1.55 m	0.25 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25						1.57 m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	4.07 d (11.2)	3.92 d (11.5)	$0.95 \mathrm{s}$	$1.27 \mathrm{~s}$	1.25 s	0.86 d (6.5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.03 d (11.2)	4.04 d (11.5)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	$1.26 \mathrm{~s}$	$1.17 \mathrm{~s}$	$1.01 \mathrm{s}$	$1.21 \mathrm{~s}$	1.20 s	0.95 d (6.5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	0.95 d (7.4)	0.90 d (7.5)	0.75 d (7.0)	0.93 d (7.0)	0.89 d (7.5)	0.93 d (7.0)
$ \begin{array}{c} 30 \\ OH \\ OAc \\ 2.11 s \\ 2.11 s \\ 2.13 s \end{array} \begin{array}{c} -0.11 dd (4.5, 5.5) \\ 0.49 dd (4.5, 9.5) \\ 4.63 s (5-OH) \\ 4.63 s (5-OH) \end{array} $	29	0.85 d (6.6)	0.85 d (6.5)	0.91 d (6.5)	0.84 d (7.0)	0.85 d (7.0)	0.90 s
OH 5.37 s 0.49 dd (4.5, 9.5) OAc 2.11 s 2.10 s 1.59 s 2.09 s 2.12 s	30						-0.11 dd (4.5, 5.5)
OH 5.37 s 4.63 s (5-OH) OAc 2.11 s 2.10 s 1.59 s 2.09 s 2.12 s							0.49 dd (4.5, 9.5)
OAc 2.11 s 2.10 s 1.59 s 2.09 s 2.12 s	OH			$5.37 \mathrm{~s}$			4.63 s (5-OH)
911 . 912 .	OAc	$2.11 \mathrm{s}$	2.10 s	$1.59 \mathrm{~s}$	2.09 s	$2.12 \mathrm{~s}$	
		2.11 s	2.13 s				

^a Spectra recorded at 500 MHz in CDCl₃ at 25 °C. ^b Spectra recorded at 300 MHz in CDCl₃ at 25 °C. ^c Spectra recorded at500 MHz in C₆D₆ at 25 °C.

sources, National Sun Yat-Sen University (specimen no. GISC-102).

Extraction and Isolation. The gorgonian coral (4.3 kg fresh wt) was collected and freeze-dried. The freeze-dried organism was minced and extracted exhaustively with nhexane and CH₂Cl₂. The combined organic extract was evaporated to give a dark green residue (37.0 g), which was chromatographed on a silica gel column using eluents of increasing polarity from *n*-hexane to EtOAc to get fractions 1-31. Fraction 24 was subjected to normal-phase HPLC column chromatography (acetone/hexane, 14%) to afford compounds 3 (4 mg) and 4 (2 mg). Compounds 2 (1 mg) and 5 (4 mg) were obtained from fraction 25 by repeated HPLC column chromatography (acetone/hexane, 16%). Fraction 26 was subjected to repeated normal-phase HPLC column chromatography (EtOAc/hexane, 20%) to afford compound 1 (2 mg). Repeated chromatography of fraction 30 over a RP-18 HPLC column (CH_3CN/MeOH/H_2O, 1:5:1) led to the isolation of compound 6 (1 mg).

Hippuristerone J (1): white powder; mp 124–125 °C; $[\alpha]_D$ -5° (c 0.32, CHCl₃); IR (KBr) ν_{max} 3448, 1729, and 1250 cm⁻¹; ¹³C and ¹H NMR data, see Tables 1 and 2; FABMS *m/z* 635 ([M + H]⁺, 2); HRFABMS *m/z* 635.3802 [M + H]⁺ (calcd for C₃₅H₅₅O₁₀, 635.3797).

Hippuristerone K (2): white powder; mp 103–105 °C; $[\alpha]_D$ +8° (*c* 1.56, CHCl₃); IR (KBr) ν_{max} 3481, and 1738 cm⁻¹; ¹³C

and ¹H NMR data, see Tables 1 and 2; FABMS m/z 583 ([M + Na]⁺, 1), HRFABMS m/z 583.3609 [M + Na]⁺ (calcd for $C_{33}H_{52}O_7Na$, 583.3613).

Hippuristerone L (3): white powder; mp 204–205 °C; $[α]_D$ +9° (*c* 1.28, CHCl₃); IR (KBr) ν_{max} 3447 and 1711 cm⁻¹; ¹³C and ¹H NMR data, see Tables 1 and 2; FABMS *m/z* 503 ([M + H]⁺, 10), HRFABMS *m/z* 503.3734 [M + H]⁺ (calcd for C₃₁H₅₁O₅, 503.3738).

Hippuristerol E (4): white powder; mp 134–136 °C; $[\alpha]_D$ +8° (*c* 0.45, CHCl₃); IR (KBr) ν_{max} 3449, 1724, and 1252 cm⁻¹; ¹³C and ¹H NMR data, see Tables 1 and 2; FABMS *m/z* 505 ([M + H]⁺, 3); HRFABMS *m/z* 505.3893 [M + H]⁺ (calcd for C₃₁H₅₃O₅, 505.3895).

Hippuristerol F (5): white powder; mp 98–100 °C; $[\alpha]_D$ –1° (*c* 2.44, CHCl₃); IR (KBr) ν_{max} 3337 and 1728 cm⁻¹; ¹³C and ¹H NMR data, see Tables 1 and 2; FABMS *m/z* 543 ([M + Na]⁺, 14), HRFABMS *m/z* 543.3663 [M + Na]⁺ (calcd for C₃₁H₅₂O₆Na, 543.3664).

1α,3β,5β,11α-Tetrahydroxygorgostan-6-one (6): white powder; mp 218–220 °C; $[α]_D -5^\circ$ (*c* 0.44, CHCl₃); IR (KBr) $ν_{max}$ 3356, 1718, and 1284 cm⁻¹; ¹³C and ¹H NMR data, see Tables 1 and 2; FABMS *m/z* 491 ([M + H]⁺, 0.5), HRFABMS *m/z* 491.3733 [M + H]⁺ (calcd for C₃₀H₅₁O₅, 491.3738).

Acknowledgment. Financial support was provided by National Science Council of Taiwan (NSC92-2113 -M-110-009) awarded to J.-H.S.

References and Notes

- (1) Sheu, J.-H.; Hung, K.-C.; Wang, G.-H.; Duh, C.-Y. J. Nat. Prod. 2000, 63.1603-1607.
- Sheu, J.-H.; Chao, C.-H.; Wang, G.-H.; Hung, K.-C.; Duh, C.-Y.; Chiang, M.-Y.; Wu, Y.-C.; Wu, C.-C. *Tetrahedron Lett.* **2004**, *45*, 6413-(2)6416.
- Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J.; Schönholzer, P. *Tetrahedron Lett.* **1977**, 4439–4442.
 Higa, T.; Tanaka, J.; Tsukitani, Y.; Kikuchi, H. *Chem. Lett.* **1981**, *11*, 1647–1650.
- (5) Higa, T.; Tanaka, J.; Tachibana, K. Tetrahedron Lett. 1981, 29, 2777-2780.
- (6) (7)
- Z100.
 Rao, C. B.; Ramana, K. V.; Rao, D. V.; Fahy, E.; Faulkner, D. J. J. Nat. Prod. 1988, 51, 954–958.
 Sheu, J.-H.; Huang, L.-F.; Chen, S.-P.; Yang, Y.-L.; Sung, P.-J.; Wang, G.-H.; Su, J.-H.; Chao, C.-H.; Hu, W.-P.; Wang, J.-J. J. Nat. Prod. 2009, 62, 017–021. 2003, 66, 917-921.

- (8) Sheu, J.-H.; Chen, S.-P.; Sung, P.-J.; Chiang, M. Y.; Dai, C.-F. Tetrahedron Lett. 2000, 41, 7885-7888.
- (9) González, N.; Barral, M. A.; Rodríguez, J.; Jiménez, C. Tetrahedron 2001, 57, 3487-3497.
- Chao, C.-H.; Huang, L.-F.; Yang, Y.-L.; Su, J.-H.; Wang, G.-H.; Chiang, (10)M. Y.; Wu, Y.-C.; Dai, C.-F.; Sheu, J.-H. J. Nat. Prod. 2005, 68, 880-885.
- (11) Tanaka, J.; Higa, T.; Tachibana, K.; Iwashita, T. Chem. Lett. 1982, 1295-1296.
- (12) Tanaka, J.; Trianto, A.; Musman, M.; Yoshida, W. Y.; Ohtani, I. I.; Ichiba, T.; Higa, T.; Yoshida, W. Y.; Scheuer, P. J. Tetrahedron 2002, 58, 6259-6266.
- (13) Shen, Y.-C.; Prakash, C. V. S.; Chang, Y.-T. Steroids 2001, 66, 721-725.
- (14) Rueda, A.; Zubía, E.; Ortega, M. J.; Salvá, J. Steroids 2001, 66, 897-904.
- (15) Ahmed, A. F.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. Steroids 2003, 68, 377 - 381.

NP050200U